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Abstract

When a mechanical system is subjected to equality constraints, use of the chain rule of differentiation
and of generalized inverses of matrices enables us to write the most general possible equation of
motion, no use being made of any physical principles, Eq. (8). Then employment of standard physical
principles enables us to further interpret the terms in this general equation of motion.
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1. Introduction

Atfirst glance it might be assumed that the basic equation of motion of analytical dynamics
would be replete with physical assumptions. Yet, this need not be so, as will unfold in the
following pages.

Let us hurry to Eq. (8).

2. Statement of the problem

We consider a mechanical system consisting of p-point masses. The mass of the ith
particle is denoted m;, i=1, 2, ..., p. The position of this particle is the three-dimensional
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column vector x;, in an inertial Cartesian frame of reference. The system position vector is
the column vector x,

T,T T\T
x=(xp X3 ...x,)0,

which is of dimension 3 p =n. We also introduce the mass matrix M, which is of dimension
3p x 3p, is a diagonal matrix, is positive definite, and has the masses m1,ma, ..., mp
down the main diagonal in groups of three, with zeros elsewhere. Assuming that the system
is subjected to m equality constraints, involving 7, the time, x, and x’, the system velocity
vector, we wish first to determine all the possible equations of motion that are consistent
with the constraints [9,10]. Following this, we shall introduce some physical assumptions
and specialize the general explicit equation of motion to the physically relevant one.

3. Derivation of the basis equations

Suppose that the system is subjected to m nonholonomic or holonomic equality con-
straints of the form

ﬁ(x,x/,t)zo, i=1,2,...,m. (0)

Then by use of the chain rule of differentiation we arrive at a set of m equations that are
linear in x”, of the form,

Ax" =b, (1)
where A is an m x n =3 p matrix function of x, x’,and ¢, and b is an m x 1 column vector
that may depend upon x, x’, and r. Experience has shown that the matrix AM~!/? is of
great significance [3,6,7], so we shall rewrite Eq. (1) as

AM™YV2 (M 25"y = b. )
The general solution of this equation may be written in the form [3,7]

Ml/Zx// — (AM—1/2)+b + [I _ (AM_1/2)+(AM_1/2)]Z, (3)

where z is an arbitrary column vector of dimension n = 3p. The matrix (AM —1/2+ s
the usual pseudoinverse of the matrix AM -1/2 [1]. The first term on the right-hand side
in Eq. (3), is a particular solution of Eq. (2), and the second is the general solution of the
homogeneous equation (AM ~1/2)(M/2x") = 0.

We now choose to write the arbitrary vector z in the form

Z=M1/2a—|—M_l/2c, 4)

where a is a special vector that will be specified later, and c is an arbitrary vector. Eq. (3)
then takes the form

M1/2x// — (AM71/2)+b +1[I - (AM71/2)+AM71/2][M1/2a 4 M71/2c]’ (5)
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which is
MYy =AM~V e+ M 2a + M2 — (AM~2) T Aq
— (AM VT aAM VY m e, (6)

Multiplying by M ~!/2, we find the desired equation of motion

" =a+ M V2AMTVH B - Ag)
+ M7V =AMV T AM T P 2, @)

or alternatively [4,8],

Mx" = Ma+ M">(AM~ V) (b — Aa)
+ M1 — (AM~VA T AM TV M e (8)

It is important to realize that the explicit equation of motion, either Egs. (7) or (8), is the
most general possible for motions that are consistent with the constraint equation, either Egs.
(0) or (1). No physical principle is involved in the derivation. The equation only involves
mass, distance and time. We shall now investigate the three terms on the right-hand side of
Eq. (8). We denote these by

FN = Ma, ©)

FY=M'"2(AM~*)T (b — Aa) (10
and

FC=M"21 —(AM~ V2T AM~ 2\~ (11)

The notation recalls the names of Newton, Lagrange and Coulomb.

If there were no constraints, Eq. (7) shows that we would have x” =a, so that the vector a is
identified as the acceleration vector that the system would have if there were no constraints.
If we now introduce the notion of “force”, FN, then Newton’s second law is contained in
Eq. (9), and we have a = M ~LFN where FN is the impressed force vector.

To understand the force F- in Eq. (10) we introduce the notion of “virtual displacement”,
defined to be any vector v such that Av = 0. Then the “work” done by the force FL in a
virtual displacement v is vT FL'. and we shall now see that this is zero. We have

AM™V2(M?v) = 0. (12)
From this it follows that

MYy =1 =AM~V T AaM=1?)q, (13)
where ¢ is an arbitrary n-vector. Consequently,

v=M"2[1 =AM~V T (AM~?))q (14)
and

T =41 — (AM~ V2T AaM 2 M2, (15)
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Thus, for the work done by the force FU in any virtual displacement v, we have

VIF =TI =AM~V T AM V2 M 2 2(AM~ Y)Y (b—Aa) =0,  (16)
in view of the second condition for the generalized inverse (AM —1/2y+,

(AM~ V2T AM~ 2y (AM 2y =AM~/ (17)

This means that the constraint force F is the constraint force that maintains the con-
straints but does no work on the system in any virtual displacement [7]. It is the force that
Lagrange himself safely characterized in the form AT/, where A is an m-vector of unknown
Lagrange multipliers [7]. Recall that AT and AT have the same range spaces.

Finally, we consider the third term on the right-hand side of Eq. (8), F€. How much work
does FC do in a virtual displacement v? We have

vTFcqu[I—(AM‘1/2)+AM_1/2]M_1/2M1/2[1—(AM_1/2)+AM_1/2]M_1/2(:
=vlec, (18)

since I — (AM -1/ 2)+AM —1/2 45 idempotent. From Eq. (18) we see that a specification of
the arbitrary vector ¢ is a specification of the work done by the constraint force F€ in a
virtual displacement v. The total force of constraint is F L 1+ FC, and since the force F-
does no work in a virtual displacement, we have

vI(FF 4+ FC) =Te. (19)

Thus a specification of the vector ¢ actually amounts to a specification of the amount of
work to be done by the total constraint force F* + FC in a virtual displacement v. Eq. (19)
is a generalization of the classical principle of virtual work.

In classical analytical mechanics [11], following Lagrange, it is assumed that the con-
straint force does no work in a virtual displacement. This is referred to as an ideal constraint.
This means that the fundamental assumption of classical analytical mechanics is that

F€ =0, (20)
so that the equation of motion, Eq. (8), reduces to [3,6,7]
Mx" =Ma+ M'2(AM~Y?) (b — Aa). (1)

More generally, though, as in situations in which sliding friction is significant, we shall
have F€ # 0, in which case the more general equation of motion, Eq. (8), will apply. When
FC€ # 0, the constraint is referred to as nonideal.

On the mathematical side the derivation of the basic equation of motion, Eq. (8), involves
the chain rule of differentiation and generalized inverses of matrices. On the physical side
the notions of mass, distance and time occur. There is no mention of kinetic energy, potential
energy, moments, etc. [2,5,11]. The concept of force occurs when we interpret the three
terms on the right-hand side of Eq. (8). To further understand them, we introduce the concept
of work. These are the only concepts introduced in this approach to analytical mechanics.
In the applications to specific systems, of course, the customary centripetal and Coriolis
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forces, moments, and so on do appear as in [7]. These motions emerge naturally from the
terms in the right-hand side of Eq. (8), but no prior exposure to them is needed.

4. An example

A particle of unit mass is confined to the line kx| — x> = 0 in the vertical (x1, x2) plane.
The acceleration of gravity in the negative x; direction is g. Suppose that the nonideal
constraint engenders an electromagnetic force ¢ that is given by the constant vector (1 2)T.
Let us use Eq. (7) to obtain the equation of motion.

The mass matrix M is

1 0
M=(0 1), (22)

and the free acceleration vector a is

i
a—<_g>. (23)

From the constraint equation we see that

kx| — x5 =0, (24)
and
kx| — x5 =0. (25)

The last equation shows that A, a 1 x 2 matrix, is

A=k —1) (26)
and

b=0, (27)
a scalar. Thus

AT =@+ 17! <_k1) (28)
and

2
A+A=(k2+1)—1<fk _1k) (29)
I—ATA=K + 17! (i :2) (30)

Consequently, according to Eq. (7), the equation of motion is

" __ 0 0 2 -1 1 k 1
X _(_g)+1A+<0—A<_g>>+(k +1) (k k2> <2> 31)
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x| 0 g (k) l+2k(1
= - —= (). 32
(D)-()-e5(4) w5 o

The three terms on the right-hand side in the last equation are easily interpreted. The first
is due to the force of gravity. The second maintains the constraint x, = kx| while doing no
work on the particle in a virtual displacement. The third is due to the nonideal nature of the
constraint. It is a constraint force that does the work 1 dxj + 2 dx» in a virtual displacement
for which dx, = kdxg.

or

5. Discussion and comments

The explicit equation of motion, Eq. (8), is obtained using the same coordinates that the
system is described in. There is no elimination of certain coordinates or introduction of
generalized or quasi-coordinates. Also no Lagrange multipliers are introduced.

Since modern computing environments such as MATLAB or MATHEMATICA con-
tain commands to obtain generalized inverses [7], Eq. (7) is most suitable for numerical
implementation. A method for computing generalized inverses is given in [1].

Eq. (7) is obtained solely from the constraint conditions in Egs. (0) or (1). Physical
assumptions occur in determining the free acceleration vector (¢ = M~ F). Virtual work
considerations determine the vector ¢, most likely on the basis of experimental observations.

The derivation of Eq. (8) involves use of the chain rule of differentiation and the concept
of the generalized inverse of a matrix. These suffice to determine the most general possible
form of the equation of motion for systems that satisfy the m constraints

,fl'(x»-x/ﬂt)z()a i=1,2,...,m.

Notice that according to Eq. (11), if the vector M ~!/2¢ lies in the null space of the matrix
AM Y2 then F€ = c. On the other hand, if the vector M ~1/2¢ lies in the column space of
the matrix (A M‘l/z)T, then F€ =0. Generally, of course, ¢ will be composed of a sum of
vectors in both spaces.

By the bold hypothesis that the constraint forces do no work in any virtual displacement,
so that FC = 0, Lagrange made it possible for analytical mechanics to be a theoretical
rather than an experimental subject. He did away with the need to specify the vector c,
which characterizes the work done in a virtual displacement v as v™c. Only the constraints,
as in Egs. (0) or (1), are to be specified. There is no need to enquire further into the
nonideal nature of the constraints and specify the work done by the constraint forces in a
virtual displacement. For mechanical models to be more accurate, though, a more realistic
specification of the vector ¢ is mandatory. This will necessitate a return to experimental
determination of the force vector ¢ in many special cases, as the refractory nature of sliding
friction dictates. Even after the vector ¢ is specified, we must remember that not ¢ but
MYV2[I — (AM~V2 T AM~Y21M~1/2¢ is the term that actually enters the equation of
motion, Eq. (8).

The right-hand side of Eq. (8) requires M, a, A, b, and c to be specified. The vector a
is determined by Newton’s law, F' N'— Ma, ora = M~ FN. The matrix A and the vector b
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are specified through the constraints, as in Eq. (1). Thus the specification of M, FN, A and
b completely determines the first two terms on the right-hand side of Eq. (8) (a =M~ FN).
The specification of the third term is not complete until the vector c is specified (as a function
of ¢, x, and x'). Since vT(FL + FC) =vT¢, a specification of the vector ¢ amounts to a
specification of the amount of work done by the total force of constraint, F' L1 FCina
virtual displacement v (for which Av = 0). Lagrange made the prescient assumption that
in many instances we may set FC = 0, so that the constraint forces do no work in a virtual
displacement. Thus the knotty problem of dealing with c is eliminated. If more realism is
required, then it becomes incumbent on the investigator to enquire more deeply into the
actual form of c¢. Most likely this requires experimentation and the utilization of existing
theories or the development of still others. One way or the other, the specification of an
appropriate vector ¢ = ¢(z, x, x) is demanded.
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